Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 784: 147224, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-33905931

RESUMO

This study assessed the real-world nitrogen oxide (NOx) emissions from 50 heavy-duty vehicles of different vocations and engine technologies using portable emissions measurement systems (PEMS). This is one of the most comprehensive in-use emissions studies conducted to date, which played a key role in the development of CARB's (California Air Recourses Board) updated EMission FACtor (EMFAC) model, especially for natural gas vehicles. In-use emissions testing was performed on school and transit buses, refuse haulers, goods movement vehicles, and delivery vehicles while were driven over their normal operating routes in the South Coast Air Basin. Engine technologies included diesel engines with and without selective catalytic reduction (SCR) systems, compressed natural gas (CNG) engines and liquified petroleum gas (LPG) engines, and SCR-equipped diesel hybrid electric vehicles. For most vehicles, the in-use NOx emissions were higher than the certification standards for the engine. Diesel vehicles generally showed higher brake-specific NOx emissions compared to the CNG vehicles. NOx emissions were strongly dependent on the SCR temperature, with SCR temperatures below 200 °C resulting in elevate brake-specific NOx. The 0.02 g/bhp-hr certified CNG vehicles showed the largest reductions in NOx emissions. The diesel hybrid electric vehicles showed important distance-specific NOx benefits compared to the conventional diesel vehicles, but higher emissions compared to the CNG and LPG vehicles. Overall, average NOx reductions were 75%, 94%, 65%, 79%, respectively, for the 0.2 CNG, 0.02 CNG, diesel hybrid electric, and LPG vehicles compared to diesel vehicles, due in part to some diesel vehicles with particularly high emissions, indicating that the widespread implementation of advanced technology and alternative fuel vehicles could provide important NOx reductions and a path for meeting air quality targets in California and elsewhere.

2.
Sci Total Environ ; 710: 136366, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-31923692

RESUMO

This study assessed the on-road gaseous and particulate emissions from three current technology gasoline direct injection (GDI) vehicles using portable emissions measurement systems (PEMS). Two vehicles were also retrofitted with catalyzed gasoline particulate filters (GPFs). All vehicles were exercised over four routes with different topological and environmental characteristics, representing urban, rural, highway, and high-altitude driving conditions. The results showed strong reductions in particulate mass (PM), soot mass, and particle number emissions with the use of GPFs. Particle emissions were found to be highest during urban and high-altitude driving compared to highway driving. The reduction efficiency of the GPFs ranged from 44% to 99% for overall soot mass emissions. Similar efficiencies were found for particle number and PM mass emissions. In most cases, nitrogen oxide (NOx) emissions showed improvements with the catalyzed GPFs in the underfloor position with the additional catalytic volume. No significant differences were seen in carbon dioxide (CO2) and carbon monoxide (CO) emissions with the vehicles retrofitted with GPFs.

3.
Sci Total Environ ; 640-641: 364-376, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29860009

RESUMO

The primary goal of this study was to compare emissions measurements between a 1065 compliant PEMS, and the NTK Compact Emissions Meter (NCEM) capable of measuring NOx, PM, and solid PN. Both units were equipped on a light-duty diesel truck and tested over local, highway, and downtown driving routes. The results indicate that the NOx measurements for the NCEM were within approximately ±10% of those the 1065 compliant PEMS, which suggests that the NCEM could be used as a screening tool for NOx emissions. The NCEM showed larger differences for PM emissions on an absolute level, but this was at PM levels well below the 1 mg/mi level. The NCEM differences ranged from -2% to +26% if the comparisons are based on a percentage of the 1.0 mg/mi standard. Larger differences were also seen for PN emissions, with the NCEM measuring higher PN emissions, which can primarily be attributed to a zero current offset that we observed for the NCEM, which has been subsequently improved in the latest generation of the NCEM system. The comparisons between the 1065 compliant PEMS and the NCEM suggest that there could be applications for the NCEM or other mini-PEMS for applications such as identification of potential issues by regulatory agencies, manufacturer evaluation and validation of emissions under in-use conditions, and potential use in inspection and maintenance (I/M) programs, especially for heavy-duty vehicles.

4.
Sci Total Environ ; 635: 112-119, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29660715

RESUMO

Hybrid engine technology is a potentially important strategy for reduction of tailpipe greenhouse gas (GHG) emissions and other pollutants that is now being implemented for off-road construction equipment. The goal of this study was to evaluate the emissions and fuel consumption impacts of electric-hybrid excavators using a Portable Emissions Measurement System (PEMS)-based methodology. In this study, three hybrid and four conventional excavators were studied for both real world activity patterns and tailpipe emissions. Activity data was obtained using engine control module (ECM) and global positioning system (GPS) logged data, coupled with interviews, historical records, and video. This activity data was used to develop a test cycle with seven modes representing different types of excavator work. Emissions data were collected over this test cycle using a PEMS. The results indicated the HB215 hybrid excavator provided a significant reduction in tailpipe carbon dioxide (CO2) emissions (from -13 to -26%), but increased diesel particulate matter (PM) (+26 to +27%) when compared to a similar model conventional excavator over the same duty cycle.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Veículos Automotores , Emissões de Veículos/análise , Dióxido de Carbono/análise , Veículos Automotores/classificação , Material Particulado/análise
5.
Environ Sci Technol ; 52(5): 3275-3284, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29446927

RESUMO

We assessed the gaseous, particulate, and genotoxic pollutants from two current technology gasoline direct injection vehicles when tested in their original configuration and with a catalyzed gasoline particulate filter (GPF). Testing was conducted over the LA92 and US06 Supplemental Federal Test Procedure (US06) driving cycles on typical California E10 fuel. The use of a GPF did not show any fuel economy and carbon dioxide (CO2) emission penalties, while the emissions of total hydrocarbons (THC), carbon monoxide (CO), and nitrogen oxides (NOx) were generally reduced. Our results showed dramatic reductions in particulate matter (PM) mass, black carbon, and total and solid particle number emissions with the use of GPFs for both vehicles over the LA92 and US06 cycles. Particle size distributions were primarily bimodal in nature, with accumulation mode particles dominating the distribution profile and their concentrations being higher during the cold-start period of the cycle. Polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs were quantified in both the vapor and particle phases of the PM, with the GPF-equipped vehicles practically eliminating most of these species in the exhaust. For the stock vehicles, 2-3 ring compounds and heavier 5-6 ring compounds were observed in the PM, whereas the vapor phase was dominated mostly by 2-3 ring aromatic compounds.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , California , Gasolina , Material Particulado , Emissões de Veículos
6.
Sci Total Environ ; 619-620: 765-771, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29161601

RESUMO

The regulated emissions of five 2012 and newer, low-mileage, heavy-duty Class 8 diesel trucks equipped with diesel particulate filters (DPFs) and selective catalytic reduction (SCR) systems were evaluated over test cycles representing urban, highway, and stop-and-go driving on a chassis dynamometer. NOx emissions over the Urban Dynamometer Driving Schedule (UDDS) ranged from 0.495 to 1.363g/mi (0.136 to 0.387g/bhp-hr) for four of the normal emitting trucks. For those trucks, NOx emissions were lowest over the cruise (0.068 to 0.471g/mi) and high-speed cruise (0.067 to 0.249g/mi) cycles, and highest for the creep cycle (2.131 to 9.468g/mi). A fifth truck showed an anomaly in that it had never regenerated throughout its relatively short operating lifetime due to its unusual, unladed service history. This truck exhibited NOx emissions of 3.519g/mi initially over the UDDS, with UDDS NOx emissions decreasing to 0.39g/mi after a series of parked regenerations. PM, THC, and CO emissions were found to be very low for most of the testing conditions, due to the presence of the DPF/SCR aftertreatment system, and were comparable to background levels in some cases.

7.
Environ Sci Technol ; 48(23): 14016-24, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25375668

RESUMO

This study investigated the effects of higher ethanol blends and an isobutanol blend on the criteria emissions, fuel economy, gaseous toxic pollutants, and particulate emissions from two flexible-fuel vehicles equipped with spark ignition engines, with one wall-guided direct injection and one port fuel injection configuration. Both vehicles were tested over triplicate Federal Test Procedure (FTP) and Unified Cycles (UC) using a chassis dynamometer. Emissions of nonmethane hydrocarbons (NMHC) and carbon monoxide (CO) showed some statistically significant reductions with higher alcohol fuels, while total hydrocarbons (THC) and nitrogen oxides (NOx) did not show strong fuel effects. Acetaldehyde emissions exhibited sharp increases with higher ethanol blends for both vehicles, whereas butyraldehyde emissions showed higher emissions for the butanol blend relative to the ethanol blends at a statistically significant level. Particulate matter (PM) mass, number, and soot mass emissions showed strong reductions with increasing alcohol content in gasoline. Particulate emissions were found to be clearly influenced by certain fuel parameters including oxygen content, hydrogen content, and aromatics content.


Assuntos
Poluentes Atmosféricos/química , Butanóis/química , Etanol/química , Gasolina/análise , Emissões de Veículos/análise , Monóxido de Carbono/análise , Conservação de Recursos Energéticos , Efeito Estufa , Hidrocarbonetos/análise , Óxidos de Nitrogênio/análise , Material Particulado/análise , Fuligem
8.
Environ Sci Technol ; 48(3): 1779-86, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24328166

RESUMO

It is important to understand the differences between emissions from standard laboratory testing cycles and those from actual on-road driving conditions, especially for solid particle number (SPN) emissions now being regulated in Europe. This study compared particle mass and SPN emissions from a heavy-duty diesel vehicle operating over the urban dynamometer driving schedule (UDDS) and actual on-road driving conditions. Particle mass emissions were calculated using the integrated particle size distribution (IPSD) method and called MIPSD. The MIPSD emissions for the UDDS and on-road tests were more than 6 times lower than the U.S. 2007 heavy-duty particulate matter (PM) mass standard. The MIPSD emissions for the UDDS fell between those for the on-road uphill and downhill driving. SPN and MIPSD measurements were dominated by nucleation particles for the UDDS and uphill driving and by accumulation mode particles for cruise and downhill driving. The SPN emissions were ∼ 3 times lower than the Euro 6 heavy-duty SPN limit for the UDDS and downhill driving and ∼ 4-5 times higher than the Euro 6 SPN limit for the more aggressive uphill driving; however, it is likely that most of the "solid" particles measured under these conditions were associated with a combination release of stored sulfates and enhanced sulfate formation associated with high exhaust temperatures, leading to growth of volatile particles into the solid particle counting range above 23 nm. Except for these conditions, a linear relationship was found between SPN and accumulation mode MIPSD. The coefficient of variation (COV) of SPN emissions of particles >23 nm ranged from 8 to 26% for the UDDS and on-road tests.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Emissões de Veículos/análise , Condução de Veículo , Peso Molecular , Tamanho da Partícula
9.
Environ Sci Technol ; 46(16): 9163-73, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22788711

RESUMO

The impact of biodiesel and second generation biofuels on nitrogen oxides (NO(x)) emissions from heavy-duty engines was investigated using a California Air Resources Board (CARB) certified diesel fuel. Two heavy-duty engines, a 2006 engine with no exhaust aftertreatment, and a 2007 engine with a diesel particle filter (DPF), were tested on an engine dynamometer over four different test cycles. Emissions from soy- and animal-based biodiesels, a hydrotreated renewable diesel, and a gas to liquid (GTL) fuel were evaluated at blend levels from 5 to 100%. NO(x) emissions consistently increased with increasing biodiesel blend level, while increasing renewable diesel and GTL blends showed NO(x) emissions reductions with blend level. NO(x) increases ranged from 1.5% to 6.9% for B20, 6.4% to 18.2% for B50, and 14.1% to 47.1% for B100. The soy-biodiesel showed higher NO(x) emissions increases compared to the animal-biodiesel. NO(x) emissions neutrality with the CARB diesel was achieved by blending GTL or renewable diesel fuels with various levels of biodiesel or by using di-tert-butyl peroxide (DTBP). It appears that the impact of biodiesel on NO(x) emissions might be a more important consideration when blended with CARB diesel or similar fuels, and that some form of NO(x) mitigation might be needed for biodiesel blends with such fuels.


Assuntos
Biocombustíveis , Óxidos de Nitrogênio/química , California
10.
Environ Sci Technol ; 45(14): 6073-9, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21662983

RESUMO

Heavy duty emissions regulations have recently expanded from the laboratory to include in-use requirements. This paradigm shift to in-use testing has forced the development of portable emissions measurement systems (PEMS) for particulate matter (PM). These PM measurements are not trivial for laboratory work, and are even more complex for in-use testing. This study evaluates five PM PEMS in comparison to UCR's mobile reference laboratory under in-use conditions. Three on-highway, heavy-duty trucks were selected to provide PM emissions levels from 0.1 to 0.0003 g/hp-h, with varying compositions of elemental carbon (EC), organic carbon (OC), and sulfate. The on-road driving courses included segments near sea level, at elevations up to 1500 m, and coastal and desert regions. The photoacoustic measurement PEMS performed best for the non-after treatment system (ATS)-equipped engine, where the PM was mostly EC, with a linear regression slope of 0.91 and an R(2) of 0.95. The PEMS did not perform as well for the 2007 modified ATS equipped engines. The best performing PEMS showed a slope of 0.16 for the ATS-equipped engine with predominantly sulfate emissions and 0.89 for the ATS-equipped engine with predominantly OC emissions, with the next best slope at 0.45 for the predominantly OC engine.


Assuntos
Monitoramento Ambiental/instrumentação , Gasolina , Veículos Automotores , Material Particulado/análise , Emissões de Veículos/análise , Carbono/análise , Cromatografia por Troca Iônica , Monitoramento Ambiental/métodos , Geografia , Modelos Lineares , Tamanho da Partícula , Sulfatos/análise
11.
Sci Total Environ ; 409(8): 1476-80, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21295821

RESUMO

On-road measurement is an effective method to investigate real-world emissions generated from vehicles and estimate the difference between engine certification cycles and real-world operating conditions. This study presents the results of on-road measurements collected from urban buses which propelled by diesel engine in Beijing city. Two widely used Euro III emission level buses and two Euro IV emission level buses were chosen to perform on-road emission measurements using portable emission measurement system (PEMS) for gaseous pollutant and Electric Low Pressure Impactor (ELPI) for particulate matter (PM) number emissions. The results indicate that considerable discrepancies of engine operating conditions between real-world driving cycles and engine certification cycles have been observed. Under real-world operating conditions, carbon monoxide (CO) and hydrocarbon (HC) emissions can easily meet their respective regulations limits, while brake specification nitrogen oxide (bsNO(x)) emissions present a significant deviation from its corresponding limit. Compared with standard limits, the real-world bsNO(x) emission of the two Euro III emission level buses approximately increased by 60% and 120% respectively, and bsNO(x) of two Euro IV buses nearly twice standard limits because Selective Catalytic Reduction (SCR) system not active under low exhaust temperature. Particle mass were estimated via particle size distribution with the assumption that particle density and diameter is liner. The results demonstrate that nanometer size particulate matter make significant contribution to total particle number but play a minor role to total particle mass. It is suggested that specific certified cycle should be developed to regulate bus engines emissions on the test bench or use PEMS to control the bus emissions under real-world operating conditions.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Automóveis/estatística & dados numéricos , Monitoramento Ambiental/métodos , Emissões de Veículos/análise , Poluentes Atmosféricos/normas , Automóveis/normas , China , Cidades , Monitoramento Ambiental/instrumentação , Material Particulado/análise
12.
Environ Sci Technol ; 41(17): 6074-83, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17937284

RESUMO

Diesel-electric locomotives are vital to the operation of freight railroads in the United States, and emissions from this source category have generated interest in recent years. They are also gaining attention as an important emission source under the larger set of nonroad sources, both from a regulated emissions and health effects standpoint. The present work analyzes regulated (NOx, PM, THC, CO) and non-regulated emissions from three in-use diesel-electric switching locomotives using standardized sampling and analytical techniques. The engines tested in this work were from 1950, 1960, and 1970 and showed a range of NOx and PM emissions. In general, non-regulated gaseous emissions showed a sharp increase as engines shifted from non-idle to idle operating modes. This is interesting from an emissions perspective since activity data shows that these locomotives spend around 60% of their time idling. In terms of polycyclicaromatic hydrocarbon (PAH) contributions, the dominance of naphthalene and its derivatives over the total PAH emissions was apparent, similar to observations for on-road diesel tractors. Among nonnaphthalenic species, itwas observed that lower molecular weight PAHs and n-alkanes dominated their respective compound classes. Regulated emissions from a newer technology engine used in a back-up generator (BUG) application were also compared againstthe present engines; it was determined that use of the newer engine may lower NOx and PM emissions by up to 30%. Another area of interest to regulators is better estimation of the marine engine inventory for port operations. Toward that end, a comparison of emissions from these engines with engine manufacturer data and the newer technology BUG engine was also performed for a marine duty cycle, another application where these engines are used typically with little modifications.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Gasolina/análise , Veículos Automotores , Emissões de Veículos/análise , Monóxido de Carbono/análise , Óxidos de Nitrogênio/análise , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Estados Unidos
13.
Environ Sci Technol ; 41(14): 5070-6, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17711225

RESUMO

Diesel particulate matter (PM) reduction efficiencies for backup generators (BUGs) (> 300 kW) equipped with a diesel oxidation catalyst (DOC), DOC+fuel-borne catalyst additive combination (DOC+FBC), passive diesel particulate filter (DPF), and an active DPF were measured. Overall, the DOC and DOC+FBC technologies were found to be effective in reducing mainly organic carbon (OC) emissions (56-77%) while both DPFs showed excellent performance in reducing both elemental carbon (EC) and OC emissions (> 90%). These findings demonstrate the potential for applying DOCs to older engines where PM is dominated by the OC fraction. In most modern engine applications, where the PM consists of mainly EC, the DOC will be largely ineffective. Alternatively, passive and active DPFs are expected to be efficient for most engine technologies. Measurements of particle size distributions provided evidence of the high temperature formation of sulfate nanoparticles across the control technologies despite the use of ultralow sulfur diesel. Changes in the particle size distribution and the organic fraction of PM indicate that the OC component of PM is primarily found in the smaller sized particles.


Assuntos
Emissões de Veículos , Carbono/química , Tamanho da Partícula
14.
Environ Sci Technol ; 38(24): 6809-16, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15669343

RESUMO

Limited data are available on the emission rates of speciated volatile and semivolatile organic compounds, as well as the physical and chemical characteristics of fine particulate matter (PM) from mobile, in-use diesel engines operated on the road. A design for the sampling of these fractions and the first data from in-use diesel sources are presented in this paper. Emission rates for carbonyls, 1,3-butadiene, benzene, toluene, xylene, PM, and elemental and organic carbon (EC and OC) are reported for a vehicle driven while following the California Air Resources Board (ARB) four-mode heavy heavy-duty diesel truck (HHDDT) cycle and while transiting through a major transportation corridor. Results show that distance specific emission rates are substantially greater in congested traffic as compared with highway cruise conditions. Specifically, emissions of toxic compounds are 3-15 times greater, and PM is 7 times greater under these conditions. The dependence of these species on driving mode suggests that health and source apportionment studies will need to account for driving patterns in addition to emission factors. Comparison of the PM/NOx ratios obtained for the above tests provides insight into the presence and importance of "off-cycle" emissions during on-road driving. Measurements from a stationary source (operated and tested at constant engine speed) equipped with an engine similar to that in the HHDDT yielded a greater understanding of the relative dependence of emissions on load versus engine transients. These data are indicative of the type of investigations made possible by the development of this novel laboratory.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/instrumentação , Hidrocarbonetos/análise , Emissões de Veículos/análise , Condução de Veículo , Tamanho da Partícula , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...